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A unit cell of a specified shape under specified loading conditions has been offered for predicting some basic
properties of particulate polymeric composites. The stress-strain state for bonded, debonding and debonded cells as
a function of the ceil stretch and superimposed pressure has been calculated for various filler volume fractions,
adhesive strengths and matrix extens~bility. The tensile curves and volume changes have been calculated for various
superpoied pressures.. The predictive ability of the unit cell has been exemplified by the comparison of the calculated
and experimental data on the modulus/filler volume fraction curves over a wide range of concentrations. © 1999
Elsevier Science Ltd, All rigbts reserved.
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1. lDtreduetioD

The problem of searehing representative volume elements in materials degrading under defonnation
has become an object of numerous publications in the last years. It is generally recognized that the
microstructure damage events based on sound physical postulates help in explaining complicated
macr<>tCOpic mechanical behavior of various materials. This situation is clearly in recent reviews of
Murakami and Uu (1996) and Broberg (1997). The specificity of particular materials (polycrystalline
metals and alloys. concrete, rock, polymeric oomposites) gives rise to a wide variety of approaches used.
Most of papers are focuied on such materials as polycrystalline metals and alloys,concrete, rock, and
rigid composites.

Papers concerning polymeric particulate composites are scanty. Structural cells are often considered as
some phenomenological objects (black boxes) whose behavior is derived mainly or partly from
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original diameter of the structural cell
original height of the structural cell
Young's modulus of the matrix
tension force of the cell
parameters in the equation for the elastic potential of the matrix material
pressure applied to the cell
radius of the spherical inclusion
surface of the inclusion opened by the matrix separation
elastic potential of the neo-Hookean matrix material
displacement of the top end of the cell relative to the bottom one
Cauchy-Green deformation tensor
unity tensor
the second Piola-Kirchoff stress tensor
the first and the third invariants of the Cauchy-Green deformation tensor
unit interface energy inclusion
elastic energy stored in the matrix volume of the cell
component of the microstrain tensor within the matrix volume
maximum principal deformation in the matrix volume (el = ..1.1-1)
breaking strain of the elastomeric matrix
component of the true microstress within the matrix volume
mean stress in the matrix So = (SII + S22 + S33)/3

maximum microstretch within the matrix volume
dilation strength of the matrix
deformation of the cell (e = W/L)
breaking strain of the cell
true stress component applied to the surface of the cell
volume fraction of the inclusion in the cell, q> = l6/3(R/D)3
mean normal stress applied to the end of the cell
ratio of the macroscopic Young's modulus of the cell to the Young's modulus of the
matrix (relative modulus of the cell)

macroscopic behavior of appropriate materials (Anderson Vratsanos and Farris, 1993a, 1993b; Liu et
al., 1998). Hence, the development of a cell as material unit, that contain sufficient information for
predicting macroscopic behavior of a material and, at the same time, is based on physical concepts
without enlisting macroscopic notions, may be regarded as a vital problem in today's material science.

Our efforts in the last few years have been focused exactly on this point, damageable particulate
polymeric composites being the object of research (Kozhevnikova et al., 1993; Moshev and
Kozhevnikova, 1996; Moshev and Kozhevnikova, 1997). In this approach, cells are considered as
systems with a rather complicated internal substructure whose macroscopic behavior is deduced from
the solution of appropriate boundary value problems. Such way of looking allows obtaining a large
body of important information concerning structural damage, explains some features of macroscopic
behavior of particulate composites and creates a more sound bridge in the field of the structure­
properties gap. The satisfactory adequacy of the approach has been evidenced by comparing theoretical
and experimental concentration curves for relative macroscopic modulus. However a number of points
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Fig. 1. Scheme of the structural cell (a) and its assumed packing (b).

remained to be studied in more detail to refine a model version suggested earlier by Moshev and
Kozhevnikova (1997). In the present paper a closer attention is drawn to action of external pressure on
the resistance and volume changes in structural cells.

2. Theoretical background

2.1. Model cell geometry, boundary and operating conditions

Cubic and cylindrical shapes are usual objects for examination. The papers by Andesson (1977) and
Xia and Shih (1995) are recent examples of such approaches. In choosing the shape of the cell for the
forthcoming research, we gave preference to the cylindrical one which is characterized by a remarkable
feature that makes it more preferable. Having increased the radius of the spherical inclusion until it
touches the lateral boundary of the cell, we come to the maximum filler volume fraction (inside the
regularly packed cells) equal to 0.607 which is very close to that characterizing the ultimate packing of
random structures composed of the uniformly-sized spheres (Bernal and Mason, 1960; Chong et aI.,
1971; Farris, 1968aFarris, 1968b). The maximum filler volume fraction in the compacted cubic cells
cannot go beyond 0.525. We believed that the specificity of the cylindrical cell mentioned would provide
better fit between the modeled and realistic behavior of particulate composites at high filler volume
fraction.

With this in mind, a general scheme of the accepted structural cell shown in Fig. l(a) represents an
elastomeric cylinder (matrix), containing a solid spherical inclusion (filler particle) at the center. The
height, L, of the cylinder equals its diameter, D. The cell is loaded by tension along the axis of the
cylinder. It is supposed that, initially, the cell is well compacted with other cells of the same size [Fig.
l(b)] and continues to retain such state under tension. Meeting this requirement makes ends of the cell
remain plane and its lateral surface keep cylindrical shape during extension.

In tension, a common mechanical evolution of the cell may be presented as it is shown in Fig. 2.
Originally, the sphere is supposed to be perfectly bonded to the elastomeric matrix. During extension,
this state is retained for some time [Fig. 2(a,b)]. However, when the intensity of the stress-strain state
within the matrix reaches some limiting value, the cell looses the capability to keep its continuity. For
highly elastic matrices, it is the detachment of the matrix from the sphere that most often takes place as
a primary damage event [Fig. 2 (c)]. This postulate is based on the numerous experiments reported by
Oberth and Bruenner (1965), Farris (1968a, 1968b), Struik et ai. (1968), Sekhar and Van der Hoff
(1971), Fedors and Landel (1975). The appearance of the transversal cracks inside the matrix phase is
characteristic for poorly resilient non-rubber matrix materials. This point is discussed in more detail in
Section 3.1.
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Fig. 2. Mechanical evolution of the cell in simple tension: (a) initial, (b) extended before separation, (c) the same after separation,
(d) extended separated, (e) ruptured.

After the debond has occurred, an empty vacuole is formed above the pole zones of the sphere [Fig.
I(c»). It is supposed that matrix separation proceeds from the both poles of the inclusion in a similar
manner. However, the cell might not be regarded as failed after the debond has occurred. It continues
to resist extension although with a significantly reduced rigidity [Fig. 2(d)] until secondary damage
comes about. This one is the breakdown of the most strained matrix belt around the equator of the
sphere [Fig. 2(e»). The secondary damage means a final failure of the cell.

The resistance of the cell depends not only on its current stretch, but also on the value of the
superimposed (external) pressure, especially after vacuole formation. Hence, in the analysis, the influence
of both operating parameters (the cell extension and the superimposed pressure) on the stress-stram
state of the cell and volume changes is to be taken into account.

Two crucial events in the outlined life-cycle of a structural cell most deeply affect its macroscopic
behavior:

1. the matrix detachment from the inclusion, and
2. the matrix breakdown.

The first lowers the resistance of the cell, the second leads to its complete failure.
The analysis of the macroscopic behavior of cells concludes the paper.

2.2. Mechanical and ultimate properties of constituent materials

The approach adopted in this paper is purely elastic one. Only an equilibrium time~independent

process is examined. The matrix phase is represented by a slightly compressible elastomer characterized
by the elastic potential with two material parameters (Kozhevnikova et aI., 1993)

G B 2
U = "2(!I - 3) + 8(1) - 1) .

Here, the first item of the sum represents neo-Hookean elastic potential for incompressible material,
where II and h are the first and the third invariants of the Cauchy-Green deformation tensor, C. G is a
material constant, whose value is taken equal to 0.1 MPa, which corresponds to the shear modulus at
small deformations or to the Young's modulus, 0.3 Mpa.

In recent publications of Blatz and Kakavas (1993), who experimented on elastomers, it was
demonstrated that Poisson's ratio of realistic elastomers is about 0.49 due to small amounts of
microscopic gas inclusions inevitably incorporated into rubber matrix during technological processing.
For that reason, the second constant, B, corresponding to the bulk modulus of the rubber matrix at
small deformations must be taken as equal to 5 Mpa.
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The state equation derived from Eq. (1) has the form

where P is the second Piola-Kirchoff stress tensor, g is the unity tensor.
The solid sphere is taken to be perfectly rigid. Hence, all the energy of deformation of the cell is

stored within the matrix volume.
Two strength criteria for elastomeric matrix are postulated:

1. breaking strain, eb, in uniaxial extension as a measure of its extensibility causing transversal crack
origination;

2. ultimate mean stress, (SO)b as a measure of hydrostatic resistance of matrix under tensile stresses
giving causing pore nucleation.

The value of eb changes widely from 100 to 1000% for common rubbers, according their chemical
specificity and network structure. The value of (SO)b will be taken as equal to 5/6 of Young's modulus of
the matrix, according to the long term investigations by Gent (1990).

The solid inclusion is taken to be non-destructive.

2.3. Damage characteristics for a structural cell

From many experimental works, the paper by Gent and Park (1984) being taken as a typical example,
one may postulate three types of damage when considering the assumed specificity of cells:

1. matrix transversal cracking in the well-bonded systems with poorly extensible matrices;
2. matrix separation from filler particles with a vacuole-shaped pore formation;
3. rupture of the debonded cells.

It is supposed that transversal crack appearance in the matrix leads to an immediate failure of the
cell. In contrast, when vacuole first appears, growing in the direction of tension, the cell keeps its
integrity for some time until the extensibility of the matrix in the most strained equatorial part becomes
exhausted. Clearly, a knowledge of the stress-strain state in the matrix volume is needed for making
quantitative strength analysis.

Two sources provoking debond appearance may be thought of. The first postulates the existence of
small precursor debonds on the surface of filler particles that are unavoidable in the actual industrial
conditions. In such a case, a Griffith's approach may be used to describe this crack propagation as it
has been done, for instance, by Kendall (1971) and Gent (1980). This 'virgin' debond starts spreading,
when the energy stored in the matrix volume due to cell extension reaches the magnitude sufficient to
create new interface surface. This condition is usually expressed as follows

(2)

where dU is the elastic energy release of the system needed to create a debond surface increment dS, Td

is the unit interface energy, determining the bond level between matrix and inclusion. Obviously, crack
growth cannot start from the very beginning of the extension. Only, when Eq. (2) has been satisfied, will
the debond begin to propagate.

It is still unknown how the energy of the adhesive debond depends on the relation between the
interfacial normal and tangential stress. We assumed this material parameter to be a constant
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magnitude, which may then be introduced into calculations describing the crack propagation. That may
be fulfilled as follows.

The current strain energy of the cell, U, is controlled and depends both on the cell extension, e= WID,
and the degree of debond characterized by the crack area, S.

Eq. (2) may now be rewritten as

T
d
= au\ (e, S» =h(e, S).

as

(3)

(4)

Taking Td to be some characteristic interface property and its value to be constant during the entire
process of the matrix separation from the inclusion, an opportunity opens for establishing a definite
correlation between e and S characteristic of the cell passing from a completely cohesive state to a
completely decohesive one.

The force, F, of cell extension is also a definite function of both the current values of e and S

(5)

Having obtained the relation between e and S from Eq. (4), one can easily calculate the tensile curve,
F vs. e, characteristic of the cell undergoing matrix separation.

Next, the question arises concerning the selection of reasonable values of Td. Evidently, the minimal
value of Td is zero, which means that the matrix is originally debonded from the sphere. The opposite
case is when the bond strength is higher than the proper strength of the matrix. Another approach can
be utilized here for establishing the origination of the debond in tension. Oberth and Bruenner (1965)
showed that when the tensile hydrostatic stress at the pole zone of an inclusion reaches the Young's
modulus value or so, small microscopic cavities within the binder phase appear in this locality and give
rise to a withdrawal of the matrix from the inclusion. Then, the peeling takes place along the thin
matrix layer on the inclusion surface as in the case of the adhesive debond, the process being controlled
by the Td value characteristic of the proper tear energy of the matrix material.

From this point of view, distinction between adhesive and cohesive debonding is of little concern.
Thus, one may conclude that it is the tearing energy of elastomers that defines the upper limit of the
bond strength. Td in such cases, may be taken as being equal to the cohesive tearing energy of a
corresponding elastomer.

According to Gent and Tobias (1982), the threshold tear strength of a hydrocarbon elastomer
correlates with its Young's modulus. The use of this correlation has permitted us to specify the
threshold tear strength for the matrix examined in this paper at the level of 150 J/m2

• This value might
be regarded at the same time as the highest Td magnitude characterizing cohesive matrix detachment
and the highest tensile effort prior to the debond onset. It is clear that the adhesive debond energies
must be of a lesser value.

2.4. Calculation procedure

The detailed description of the calculation method is published elsewhere (Kozhevnikova et aI., 1993).
For the solution of the boundary value problem, a functional of a special form is offered and used

- J ( 2(Q() 2 G 2 0-) J -- 0He(H, u) = Vo AH(h - 1) - A 2 H + W\(I\) + 4'((h - 1) - AIXH) - p K dVo - sopu dSp ,

p
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Fig. 3. Sketch of the finite element grid adopted for calculations for a filler volume fraction of 40%.

where A=BG/(2(B-G)) and a=4/B; ii is the displacement vector; Va is the undeformed volume with
volume forces, K, density, pO, and the surface S~, where forces, p, are applied; AH=(J is the normalized
quantity of (J.

The variations of this functional in Hand ii leads to known variational equations of continuum
mechanics for large deformations.

The finite element method was used for calculations. A typical sketch of the adopted finite element
grid is shown in Fig. 3 for a filler volume fraction of 40%. Considering the geometry of the cell, a
condensation of elements near the inclusion was performed.

Displacement vector components and the function H were approximated by the shape function 'Pp

and ifJN . Then the displacements become up = 'Pnu~ and the function H=ifJNH
N

, where u~ is the value of
the vector component up in n-node, while H N is the H value in N-node.

A program was developed for the incremental load procedure, using triangular cylindrical finite
elements with a square approximation to the displacement field, and linear functions H. In contact
zones, the conditions for non-penetration and non-positiveness of normal pressure, were introduced.

3. Microstress and microstrain distributions in the matrix phase of cells

It is obvious that the distribution of stresses and strains must depend strongly on the state of the cell.
Hence it seems reasonable to examine separately bonded, debonding and debonded states of the cell.

The action of two parameters defining test conditions, i.e. the cell's extension, e, and the external
pressure, P, will be examined.

Remembering that the spherical inclusion as a constituent of the structural cell is taken to be perfectly
rigid and non-destructive, the analysis of the internal state of the cell will cover only the examination of
the stress-strain state of the matrix and the volume changes of the cell caused by the proper matrix
compressibility and induced by vacuole appearance and evolution.

According to previous discussions, two representative quantities of the stress-strain state of the
rubbery matrix are chosen for further analysis: the maximum principle strain, e" as an invariant
characterizing the intensity of deformation and the mean stress, so, as a measure of hydrostatic intensity
of stress state. In this paper, the value of et is presented as et =A.t-l, where A.t is the maximum principal
stretch. The value of So is the mean of three principal true stresses.
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Most of the quantitative data to be presented in the subsequent analysis as illustrations have been
obtained from calculations for a cell containing 30% by volume solid phase, extended to 10% and
affected by zero and 0.1 MPa external pressures.

Figures will present the el and So distributions for imposed conditions as shadow patterns: the higher
the level of the strain or stress, the lighter the shadow. Such patterns are to be regarded primarily as
qualitative estimations for getting general orientation, although most important numerical data needed
for analysis are indicated in critical localities.

3.1. Bonded cells

For a perfectly bonded cell, it may be safely suggested that the strain distribution in the matrix is
determined basically by the degree of its extension since the influence caused by superimposed pressure
cannot be significant due to minor compressibility of the rubbery matrix.

Fig. 4(a-d) presents el and So distributions at the test conditions mentioned above. Strain patterns
(Fig. 4(a) for P = 0 and (b) for P = 0.1 MPa) are close to each other. It is seen that the most strained
localities are situated above the poles of the sphere and along its surface at an angle of about 45° with
respect to the z-axis direction. For 30% filler volume fraction, the maximum strains are 4-5 times
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Fig. 4. el (a, b) and So (c, d) distributions at zero (a, c) and 0.1 MPa (b, d) superimposed pressure in a bonded celt Wbj~ lines in
(c) and (d) demarcates the regions of positive and negative mean stresses.
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greater than the proper strain of the cell. However, the polar maximum seems to be more critical than
that adjacent to the sphere surface: it is somewhat greater and is positioned in a zone with higher
hydrostatic tension than the near-wall one.

The so-distribution, in contrast to the el-distribution, is strongly responsive to the superimposed
pressure (Fig. 4(c) for P = 0 and (d) for P = 0.1 MPa). In both cases, the volume of the matrix can be
decomposed in two subdomains with positive and negative mean stresses, whose separation is shown as
a white line in Fig. 4(c,d). A zone of the maximum hydrostatic extension (about 0.22 MPa) is localizec
at the pole of the inclusion [Fig. 4(c)], while that of the maximum hydrostatic compression (about
-0.09 MPa) in Fig. 4(c) surrounds the equator of the inclusion. Pressurization of the cell increases the
volume falling under the compressive mean stresses and diminishes strongly the maximum tensile mean
stress at the pole from 0.22 to 0.085 MPa [Fig. 4(d)]. At higher pressures, the hydrostatic tension inside
the matrix is eliminated completely.

Fig. 4 gives a clear general idea about the qualitative specificity of the strain and stress distributions
and plausible sources and sites of damage appearance. Calculations show that, as to positioning of
critical localities, this pattern remains the same for other solid volume loadings (Moshev and
Kozhevnikova, 1997).

Inside the matrix, two sites of damage issuing from the stress-strain analysis may be inferred. The
first is what one might call a distortion damage. It arises at the locality where el reaches the breaking
strain of the matrix, eb, i.e. at the ends of the cell, and has a form of a transversal crack, as was
demonstrated in the experiments of Gent and Park (1984) or Dekkers and Heikens (1985). The second is
what one might call a decohesion damage. It arises in the matrix close to the pole of the inclusion as a
tiny onion-shaped tear, when So in this place reaches a magnitude approximately equal to the matrix
modulus, Em. Tear appearance triggers matrix separation with a crack propagating along the surface of
the inclusion, the thin matrix level remaining intact on the solid surface (Gent and Park, 1984; Oberth
and Bruenner, 1965).

Besides these two modes of damage, there exists the third one, that of pure interface debond,
emerging when the energy of the adhesive tearing is less than that of the matrix. The interface failure
gives rise to an appearance of a curvilinear crack similar to that from the matrix decohesion.

In the framework of the model in question, the appearance of the cross-cut crack, as a result of a
poor extensibility of the matrix material, is regarded as a complete failure of the cell, while the
decohesive and adhesive phenomena near the pole of the inclusion giving rise to the interface separation
may be considered only as some primary pore-forming damage not leading to the immediate failure of
the cell. The answer to the question, which of these modes of damage is to occur first, depends on the
test conditions (cell's extension and superimposed pressure), matrix properties (Young's modulus and
extensibility), adhesive debond energy, and filler volume fraction determining strain and stress
concentrations.

It is clear that the case of perfect bond between the matrix and the filler benefits the transversal crack
breaking mode to the utmost extent. This crack is to occur inside the matrix near the ends of the cell,
where longitudinal straining of the matrix reaches maximum as it follows from Fig. 4(a,b). In this place,
the strain of the matrix, e, is controlled mainly by the strain of the cell, E, and the strain concentration
factor, k t , called forth by the filler volume fraction, cp. Hence, the value of e is found simply as a
product of E and kt . The transversal crack appears when e reaches the breaking strain of the matrix
material, eb. This dependence is depicted in Fig. 5, where the breaking strain of the cell, caused by
transversal cracking (Eb)t, is represented as a function of cp for various breaking strains of the matrix
material, eb'

At the same time, matrix decohesion, provoked by the cavitation near the pole of the sphere by the
hydrostatic tension is determined by the strain of the cell, E, hydrostatic stress concentration factor, kh,

(as a function of the filler volume fraction) and external pressure, P. The cavitation and the immediate
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matrix separation occur when the value of the hydrostatic tension (under imposed P) reaches the value
of the Young's modulus of the matrix.

The correspondent critical strain of the cell, (Sb)c, as a function of filler volume fraction for the range
of P from zero to 0.2 MPa, is also shown in Fig. 5 as a shadowed strip.

It follows immediately from Fig. 5 that, for all values of cp, cavitation, followed by matrix separation,
always precedes transversal crack formations when the breaking strains of the matrix material are
greater than 1.0; this is confirmed by experimental practice. Obviously, an adhesive debond, as a cause
of the matrix separation, only favors this feature.

Corresponding empirical relations suitable for the range of cp from 0.1 to 0.5 are given below:

eb

(Sb\ == (1.83 _ 12.39cp + 259.4cp2 - 983.0cp3 + 1313.6c(4),

3.2. Debonding cells

A general estimation of the specificity of the strain and stress distributions in a partly debonded cell
can be perceived from Fig. 6(a-d). This figure (similarly to Fig. 4) presents el and So distributions for
the test conditions mentioned above. A drastic rearrangement of the strain and stress distributions, as
compared with Fig. 4, takes place after matrix separation onset. A withdrawn, vault-like part of the
matrix that previously exhibited the highest strains under tensile hydrostatic stresses, now experiences
insignificant compression and is weakly strained. Maximum local straining shifts to the tip of the
progressing curvilinear crack.
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Fig. 6. el (a, b) and So (c, d) distributions at zero (a, c) and 0.1 MPa superimposed (b, d) pressure in debonding cell. White line in
(c) demarcates the regions of positive and negative mean stresses. In (d), positive So are concentrated around the tip of the crack.

Clearly, the finite element approach can provide only approximate estimations in this locality.
Nevertheless, it gives some insight into the order of magnitude of the strains computed for the grid
adopted. Calculated coefficients of the strain concentration are of the order of 30. This suggests that if
the separation of the matrix has started, it will continue (led by the crack tip singularity) until the
detachment is complete. During the crack propagation, other damage effects are hardly possible except
for the moment when the crack tip approaches the equatorial zone. There, at the line of separation, the
transversal cracks are sometime observed in experiments with matrices having moderate breaking
strains.

Curiously enough, an application of external pressure to the cracked cell [Fig. 6(b)] leads to an
augmentation of strains both in the dome and equatorial parts of the matrix; the high strains originate
from the matrix dome flattening, Nevertheless, cracks are never observed experimentally in this zone,
since the hydrostatic compression is possibly the strong impeding factor.

In the pressurized cell, the contact area between the matrix and the inclusion increases, and yet the
point of the strain concentration remains at the tip of the closed crack [Fig. 6(b)).

Pressurizing diminishes the fraction of the matrix volume found under hydrostatic tension [Fig.
6(c,d)], reducing it to zero at high pressures. On the other hand, the extension of the pressurized cell
always tends to increase the region of positive mean stresses and the result always represents a balance
of these counteracting factors.

Calculations show that the general character of strain and stress patterns in cracked cells does not
change basically with filler volume fraction.
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Fig. 7. e, (a, b) and So (c, d) distributions at zero (a, c) and 0.1 MPa superimposed (b, d) pressure in debonded cell. White line in
(c) demarcates the regions of positive and negative mean stresses. No positive So exists in (d).

3.3. Debonded cells

After the crack propagation has reached the equatorial line, the cell may be judged as being fully
debonded. A singular point disappears and, with it, the stress and strain concentrations. This is in a
good agreement with the results of Dekkers and Heikens (1985) for a rigid sphere embedded into an
infinite polymeric matrix. The strain magnification factor drops in the most strained equatorial matrix
belt to an insignificant value of about 2, which depends weakly on the cell elongation.

Typical strain and stress distributions in completely debonded cells is exemplified in Fig. 7(a-d). The
strain distributions [Fig. 7(a,b)] are similar to those observed in partly detached matrices [Fig. 6(a,b)].
Superposing pressure, again, drastically enhances the strains at the summit of the vacuole dome from
2% to about 50% [Fig. 7(c,d)]. At the equator, they are also raised but to a lesser extent (30%).

The high strain magnification above the pressurized vacuoles, called forth by the high transversal
hydrostatic compression [Fig. 7(b)], as has been noted above, does not lead to crack formation. The
stretched matrix belt in the equatorial part is also found to be under hydrostatic compression. These
conditions impede crack origination and opening, and reinforce composites. The reinforcing action of
pressurization is well corroborated in numerous experimental investigations (Farris, 1968a, 1968b;
Oberth and Bruenner, 1965 and others).

The minimum hydrostatic compression [Fig. 7(d)] is localized along the line of matrix detachment.
This fact and the vacuole presence might favor crack origination and opening. Perhaps this explains
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why the matrix is commonly disrupted in this locality, rather than at the equator, where the strain is a
trifle over that at the line of detachment. Taking into account the closeness of both magnitudes, a
somewhat greater equatorial strain seems to be more suitable to use in the estimation of ultimate
extensibility of the debonded cells by equalizing this strain to the breaking strain of the matrix material.

It has been found that the formula expressing this relationship is of the form

6b = (1.8(1 + 190cp6.8)(1 + O.58p0.45)'

where 6b is the breaking strain of the cell, eb is the breaking strain of the matrix material, cp is the filler
volume fraction and P is the superimposed pressure.

4. Effective characteristics of cells

The foregoing analysis has been focused on the internal features of structural cells under extension. A
transformation of structural notions and relations, used in solutions of boundary-value problems, into
corresponding macroscopic characteristics of cells is the next step to continuum formulations.

For this, a substitution of the microstresses, sij, and microstrains, eij, that have been used, say, for
inside-cell analysis, for macroscopic stresses, (Jij, and strains, 6ij, of a larger scale level, i.e. that of the cell
characteristic size, is needed. This allows the cell to be presented as some uniform material unit. Based
upon the assumed boundary conditions for cells, the normal nonuniform microstresses Sz and Sr at the
ends and the lateral area of the cell (Fig. 8) may now be substituted for their averaged values (Jz and (Jr

that may be regarded as common sense stresses on the boundary of a continualized material unit. In the
following analysis, (Jz and (Jr will be presented as engineering values related to the initial cross-section of
the cell model. The tensile strain of the cell, 6z , is calculated simply as the ratio between the
displacement of the ends, W, and the initial height of the cell, L. Hence, the notion of the macroscopic
Young's modulus of the cell may be easily formulated as a ratio between (Jz and 6z at (Jr = O.

z

r

Fig. 8. Microstress distribution on the boundaries of the cell.
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Fig. 9. Relative modulus vs. filler volume fraction for bonded cells: solid line is calculation, shadow is experimental.

The macroscopic behavior of the cell model will be represented by its stress-strain and volume-strain
curves. A particular form of these relations is a function of many variables: cp, P, Td , G, D, eb and (SO)b.
To exemplify the characteristic features of the macroscopic behavior of cells, a following set of the basic
input data has been taken: cp=0.3, P = 0, Td =100J/m2

, G = 0.1 MPa, D = 5.0 MPa, eb=2.0 and
(SO)b = 0.3 MPa.

First, the predictive capability of the bonded cylindrical cell has been checked; the relative modulus
was calculated as a function of filler volume fraction. Fig. 9 presents the obtained dependence in
comparison with well-verified experimental data collected from various sources (shaded region) by
Chong et al. (1971). The agreement between theoretical and experimental results may be judged as being
good up to high concentrations. The theoretical curve lies somewhat higher than the averaged
experimental data. Most likely, this is due to the fact that in actual systems, the directions of the cells
are randomly inclined to the tension direction thereby decreasing the averaged resistance.

Of special interest is the initial part of the curve (up to 5% by volume) given as an inset in Fig. 9.
The initial slope came out to be 2.5, which equals the well-known Einstein's coefficient in the formula
for the viscosity of suspensions. This result not only testifies to a good predictive ability of the cell
model, but also demonstrates that in specific cases, when one can neglect filler particle interactions, the
macroscopic properties of a random system can be estimated from the analysis of properly characterized
individual structural cells.

Tensile curves of cells are calculated according to the scheme of Fig. 2. First, the initial part of the
curve with a slope characteristic of the bonded cell is calculated. Then the position of the point of
separation on a (j-e plot is established, as is indicated in Section 2.3 of this paper.

During the separation phase, the rigidity of the cell drops to a minimum, with a subsequent increase
caused by the ever-continuing extension. The degree of rigidity drop depends on the filler volume
fraction. At lower filler volume fraction (small sphere inside the assigned cell volume), the formation of
the small vacuole can only slightly affect the resistance of the cell. By contrast, at higher filler volume
fraction (large sphere inside the assigned cell volume), a large vacuole forms and the decrease in the
cell's rigidity becomes considerable due to the marked narrowing of the equatorial matrix belt (Fig. 2).
The cell breaks down when the strain of the fully debonded matrix at the equator reaches the breaking
strain of the matrix material.
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Fig. 10. Tensile curves at various filler volume fractions indicated near the curves for P = 0.0 and Td = 100 11m2
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Fig. 10 demonstrates how the shape of the tensile curves depends on the filler volume fraction.
Increasing the filler volume fraction makes the drop of the cell rigidity deeper and the transition zone
much wider.

The position of the transition curves strongly depends on the adhesive strength. The existence of small
precursor cracks on the interface between the sphere and the matrix is postulated which trigger crack
propagation according scheme given in Section 2.3. Nothing is known about the sizes and shapes of
such initial imperfections. We assumed these cracks to be small enough not to markedly change the
initial storing elastic energy of the cell, as compared with the perfectly bonded system.

Fig. 11 demonstrates the specificity of the adhesive energy influence. Lower Td values entail lower
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Fig. 11. Tensile curves at various interface bond energies Td in 11m2 indicated on the curves for rp = 0.3 and P = o.
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strains, at which the separation starts and, accordingly, the lower transition part of the tensile curve.
The upper limit of the transition part is determined by the cohesive energy of the matrix, when the
cavitation in the polar zone of the inclusion induces the separation process. In our case, it has been
assumed to be 150 J/m2

.

Fig. 12 depicts the influence of the superimposed pressure on the stress-strain behavior. It is seen that
the resistance of the pressurized cell significantly increases due to the shrinking of the vacuole,
accompanied with an increment in the elastic energy stored in the matrix. However, a gain in the
rigidity increase with pressure slows down tending an asymptotic level corresponding to a complete
vacuole closure.

Volume changes of the structural cell regarded as a continuum material unit are complicated. While
the cell remains in the bonded state during the extension, the volume changes, with a good
approximation, can be neglected. Then, after the separation has come about, a vacuole appears and
grows. This state of the cell becomes highly responsive to the superimposed pressure. While the
separation process is going on, the volume change is a function of the current stretch of the cell, the
degree of separation and the superimposed pressure. The volume change during the extension of the
initially bonded structural cell together with the correspondent tensile curves is shown in Fig. 13 for
zero (a) and 0.1 MPa (b) external pressures.

After the separation has come to an end, the volume change becomes a function of two factors only:
the current stretch of the cell and the superimposed pressure.

Fig. 14 demonstrates the influence of pressurization on the volume evolution of the debonded cell in
extension. It is seen how the external pressure impedes the onset and magnitude of the volume growth.

5. Discussion of results

The data presented and examined above demonstrate that the offered structural cell (geometry,
boundary conditions, mechanical properties of constituent elements) appears to be an efficient tool in
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the elucidation of both microscopic and some macroscopic features of damageable particulate
composites. The establishment of the macroscopic behavior of cells stemming from the solution of
relevant boundary value problems seems to be a necessary condition for subsequent development of
continuum constitutive relations based on structural ideas. The structural approach looks more
representative than the usual phenomenology derived directly from experiments.
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Fig. 14. Volume changes of the debonded cell in extension under various superimposed pressures values in MPa indicated on the
curves for <p = 0.3 (Td = 0 J(m2

).
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Moreover, some important results can be obtained immediately from the examination of single cells.
For instance, it is known that increasing external pressure does not lead to unbounded augmentation of
the rigidity of composites: this process tends to flattening out with pressure. Usually, the plateau
pressure and corresponding rigidity are found from experiments. Using structural cells allows one to
directly predict the value of the maximum rigidity of cells caused by pressurizing, in relation to the filler
volume fraction, the cell's elongation and rubber matrix modulus. In a like manner, the breaking strains
of composites can be predicted as a first approximation. The evaluation of other macroscopic properties
of the cells, for instance the compressibility, appears to be a good reference point in a priori estimations
of the properties of composite systems. Such predictions are a great support for material scientists in
designing new composite materials.

The cylindrical structural cell need further refinement focused on accounting for the visco-elastic
nature of many polymeric matrices, the appearance of the interface sliding friction between the
separated matrix and particles, and the time dependence of the cohesive and adhesive damages.
Nevertheless, the knowledge already gained opens the way for attempts to construct a continuum
description based exclusively on an available microstructural base.

6. Conclusions

A unit cell of a specified shape under specified loading conditions has been offered for predicting some
basic properties of damageable particulate polymeric composites.

A method for the evaluation of the stress-strain state of cells under extension has been proposed and
a variety of the boundary-value problems in the framework of large deformations has been solved.

Three sources of internal microdamage leading to a failure of the cell have been postulated: extreme
local stretch and extreme local hydrostatic tension of the matrix constituents, as well as adhesive
detachment of the matrix from the inclusion. A stress-strain analysis of cells has been carried out taking
these damage events into account.

The macroscopic behavior of the structural cells reflecting bonded and debonded states has been
established and the pertinent tensile curves, including the cell's breakdown, have been calculated. The
influence of the filler volume concentration, adhesive bonding, external pressure on the tensile curves
and volume changes has been demonstrated.

The good predictive ability of the approach has been exemplified by the comparison of the calculated
and experimental data on the modulus/filler volume fraction curves over a wide range of concentrations.
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